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I. INTRODUCTION

SLAM (Simultaneous Localization and Mapping) is a tech-
nique used in robotics and computer vision to create a map
of an unknown environment while at the same time keeping
track of the robot’s position within that environment. SLAM
is a challenging problem because it involves estimating both
the position of the robot and the location of landmarks in the
environment simultaneously, and dealing with the uncertainty
that arises from sensor noise and imperfect knowledge of
the environment. It’s applications in robotics include au-
tonomous navigation, mapping of unknown environments, and
augmented reality.

In this project, we are solving the slam problem for a car in
an unknown environment with IMU and landmark feature data
obtained from the sensors on the car. We propose a solution for
visual-inertial SLAM based on Extended Kalman Filter (EKF)
and visual landmarks. The EKF is a version of non-linear
Kalman Filter using first-order Talyor series to approximate
the motion and observation models around the state and noise
means.

II. PROBLEM FORMULATION

A. Simultaneous localization and mapping

The SLAM problem is a combination of 2 problems,
which are mapping and localization. Given robot’s trajectory
zo.7 and sensor measurements zy.r and observation model A,
the mapping problem can be written in this way:
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where m is the map.

Given the map m, sensor measurements zo.7, observation
model £, control input ug.7—; and motion model f, we can
localize the robot, i.e. get the robot’s trajectory, by defining
the localization problem as follows:
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where zg.7 is the trajectory.

Combining (1) and (2), we can formulate an optimization
problem to estimate the orientation trajectory x1.7 and map m.
The following is the objective function of the slam problem:
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B. Bayes Filter

Bayes Filter is a probabilistic technique for estimating
the state z; of a dynamical system by combining evidence
from control inputs u; and observations z; using Markov
assumptions and Bayes rule. The Bayes filter keeps track of
predicted pdf and updated pdf.

o Prediction Step: given a prior pdf py; of x; and control
input u;, we use the motion model p; to compute the
predicted pdf p;4q); of xy:
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 Update Step: given a predicted pdf p;y); of z; + 1 and
measurement z; + 1, we use the observation model p;, to
obtain the updated pdf p;yqj¢41 of x4
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C. IMU Pose Estimation

The first problem of the project is the IMU pose estimation
problem. Given IMU data u; = [v;,w;]T € RS, where v; and
w are linear velocity and angular velocity respectively, we need
to estimate the pose of IMU T; € SE(3) over time t.

D. Landmark Mapping

The second problem of the project is the landmark mapping
problem. Given the robot poses z; (obtained from IMU
pose estimation) and landmark observations zg.r, we need to
estimate the position of the landmarks m € R3*M | where M
is the number of landmarks.

E. Visual Inertial SLAM

The third problem of the project is the visual inertial slam
problem. Given IMU data u; = [v;,w;]? € RS, and landmark
observations zp.7, where zp € R**M (left and right image
pixels), we need to simultaneously localizing the robot pose
and landmark mapping in the world frame.



III. TECHNICAL APPROACH
A. IMU Localization via EKF prediction

We adopt EKF to solve the SLAM problem. Here we are
using the prediction step of EKF for IMU localization. We aim
to update the mean p € SE(3) and covariance 3 € R6%¢ of
IMU position in the prediction step. The predicted mean and
covariance can be written with motion noise w; ~ N (0, W)
as follows:
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where 7 is the time discretization, u; € R**4 i the hat map
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of the control input u;, and u; € R6%6 is the adjoint of i,
which are shown as follows:
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where «j; € R3*3 is the hat map of w; € R? and v, € R3*3
is the hat map of v; € R3.

B. Landmark Mapping via EKF update

We are using the update step of EKF for landmark mapping.
We aim to update the mean p € R*M and covariance
¥ € R3M>3M of Jandmark position in the update step. The
predicted mean and covariance can be written with observation
noise v; ~ N(0,V) as follows:
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where z; is the current observation, z; is the predicted
observation, K; is the kalman gain, H, € RAN:X3N g
the observation model Jacobian where N; and N are the
number of current observed landmarks and total landmarks
respectively. H; and z; are shown as follows:
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where the camera calibration matrix M is defined as fol-
lows:
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The derivative of projection function 7(q) can be written
as follows:
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The observation z; in the world frame can be obtained as
follows:
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where ,R; is the rotation matrix of IMU to camera, RT is
the rotation matrix of world to IMU, p is the current IMU
position in the world frame, and all other parameters are from
camera data.

The resulting m is our current observation z; in the world
frame.

C. Visual-Inertial SLAM

We combine the EKF prediction step and update step to
localize IMU pose and also map the landmarks. The prediction
step remains the same in part A. The update step is similar to
part B, but is modified as follows:
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where z; +1 is the predicted observation, H; i, €
RANex6_H, 1, and 251 are shown as follows:
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IV. RESULTS

The following are the results of visual-inertial SLAM for 2
different datasets, including the original dead-reckoning path
with landmark positions and visual SLAM path with landmark
positions.
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From the result above, we can see that the trajectory gained
from visual SLAM have a shift from the ones gained from
dead-reckoning, which we viewed it as an improve from using
only dead-reckoning without visual data. Although the result
seems to be fine, there are still some points we can improve:

o Use more feature points. Due to the computational issue,
we only adopt a small portion (% ~ %) of the data.

o Fine-tune the covariance of motion and observation noise.



