ECE276A Project 2: Particle Filter SLAM

Wilson Liao
Department of Electrical and Computer Engineering
University of California, San Diego
w4liao@ucsd.edu

I. INTRODUCTION

SLAM (Simultaneous Localization and Mapping) is a tech-
nique used in robotics and computer vision to create a map
of an unknown environment while at the same time keeping
track of the robot’s position within that environment. SLAM
is a challenging problem because it involves estimating both
the position of the robot and the location of landmarks in the
environment simultaneously, and dealing with the uncertainty
that arises from sensor noise and imperfect knowledge of
the environment. It’s applications in robotics include au-
tonomous navigation, mapping of unknown environments, and
augmented reality.

In this project, we propose a solution for SLAM based on
particle filter and occupancy grid. We utilize encoder, LIDAR
and IMU data gained from a differential-drive robot with
motion model and observation model to perform mapping and
localization simultaneously.

We also extend this to texture mapping, which aligns the
color pixels from RGBD sensor onto the occupancy grid.

II. PROBLEM FORMULATION
A. Particle Filter Slam

1) Simultaneous localization and mapping:

The SLAM problem is a combination of 2 problems,
which are mapping and localization. Given robot’s trajectory
zo.7 and sensor measurements zy.r and observation model A,
the mapping problem can be written in this way:

T
H}}LHZHZt—h(xtvm)H% ()
t=0

where m is the map.

Given the map m, sensor measurements zg.7, observation
model h, control input ug.r—1 and motion model f, we can
localize the robot, i.e. get the robot’s trajectory, by defining
the localization problem as follows:

T T-1
Iglolgz 120 = hlxe, m)|I3 + Y lwesr — flesu)lls ()
=0 t=0

where x(.7 is the trajectory.

Combining (1) and (2), we can formulate an optimization
problem to estimate the orientation trajectory x1.7 and map m.
The following is the objective function of the slam problem:

T T—1
. 2 2
TflnTH}n; |2t — h(xe, m)|]5 + tz_; l[2e41 — f(@e,ue)llz (3)

2) Bayes Filter:

Bayes Filter is a probabilistic technique for estimating
the state z; of a dynamical system by combining evidence
from control inputs u; and observations z; using Markov
assumptions and Bayes rule. The Bayes filter keeps track of
predicted pdf and updated pdf.

o Prediction Step: given a prior pdf py; of x; and control
input u;, we use the motion model p; to compute the
predicted pdf p;4q); of xy:

Pesala) = / py(als, u)pye(s)ds (4)

» Update Step: given a predicted pdf p;y¢ of ¢y + 1 and
measurement z; + 1, we use the observation model p;, to
obtain the updated pdf pyi 1441 of z4:

Prsaies(z) = Ph(zt+1|x)Pt+1|t($))
e+ fph(2t+1|3>pt+1\t(5)d5
3) Occupancy Grid Mapping:

Occupancy grid map m is unknown and needs to be
estimated given the robot trajectory xo.; and a sequence of
observations zg.;. Besides, the measurements are also uncer-
tain, we maintain a probability mass function over time:

p(m|zo:¢, To:t) 6)

Most occupancy grid mapping algorithms assume that the
cell values are independent conditioned on the robot trajectory:
n
p(m‘ZO:ta xO:t) = Hp(mi|20:t7 x():t) (7)
i=1
4) Texture Mapping:
Given a occupancy gird map m and RGBD images, the
goal is to form a vector m, € R"*® ,where each entry is a
RGB floor color corresponding to the cell in m.

III. TECHNICAL APPROACH
A. Particle Filter Slam

1) Frame Transformation:
We first transform the received LiDAR scan data from
range data into Xx-y coordinates for further transformation.
Then we take the points and transform from LiDAR frame

to world frame in order to construct our occupancy map. The
following shows the overall transformation:

wlL = wlppTy (3

where W, B and L represent world, body, and LiDAR
frame respectively. Moreover, the transformation matrix can
be written in the following way:

cos(d) —sin(f) 0 «x

_ |sin(@) cos() 0 y
wlz ="y 0 1 0127 ©)

0 0 0 1

where x and y are the current robot position in the world
frame, and @ is the yaw of the robot.

1 0 0 0.150915
010 0

BIL=10 0 1 051435 (10)
00 0 1

Once we get the 2 transformation matrix, we can transform
LiDAR scan data from LiDAR frame to world frame:

TWwW Ty,

yw | _

v | = wlsBTL 0 (11)
1 1

2) Mapping:

After we get the LiDAR scan in world frame, we first
filter out points that are too close (0.1m) or too far (20m)
from the robot. Then we use the Bresenham algorithm to get
the grids that are passed by the line connected by the robot
position adn LiDAR points. These grids are viewed as free
cells while the grids where the LiDAR points set are viewed
as occupied cells.

The grid map is initialized with zeros, and is updated by
adding 4log~v into occupied cells and minus log~y into free
cells, where ~y is set as %. The values of the log map are
limited to +100.

3) Update particles:

We use particle filter to solve the SLAM problem. We first
initialize N particles with random poses and uniform weights
(1/N). For every particle ,uflt, k = 1...N, we compute their
next state as follows:

tivage = F (g e+ o1) (12)

where f is the motion model, p; = (¢, yy,0;) is the relative
odometry input, and oy ~ N(0,0) is a 2D Gaussian motion
noise.

To elaborate more, the poses of all particles are updated
with the motion model in this way, which is also the motion
model f of the particles:

y Ty dx N(0,0,)
Yi| = |Yi-1| + |dy| + [N(0,04) (13)
0! g | d6| | N(0,09)

where z¢, y! and 0! are the pose for each particle i at t*"
iteration.

The pose of each particle is updated by its previous pose and
the difference in odometry and motion noise. The odometry
is obtained from combining encoder and imu data as below:

dx vicos(0y)
dy| =7 |vesin(6y) (14)
df w

where v; and w are obtained from encoder and imu data
respectively:

b= LEEIR (15)
w = yaw(angular velocity) (16)
a7
where
Vi = (FR+ RR)/2 *0.0022 * 40 (18)
Vi = (FL+ RL)/2 % 0.0022 * 40 (19)

where encoder counts [F'R, F'L, RR, RL] corresponding

to the front-right, front-left, rear-right, and rear-left wheels

4) Measurements update:

After we get the new poses of the particles from the
motion update, we need to check whether the particle poses
are align with the current LiDAR scan. To elaborate more, we
need to transform the scan z;4; to the world frame using uf‘ .
(particle pose) for k& = 1...N and find all cells y, in the
grid corresponding to the scan. The weights of the particles
are updated and resampled if necessary.

o Weight update: The weights of the particles are set
according to how much the LiDAR scan aligned with
the pose of each particle. The particle whose map cor-
responds highly to the previous log map is given more
weight (correlation value). Thus, we can calculate the
weights by summing up over the LiDAR scan hits or
occupied cells. Then we multiply the previous weight
vector with the correlation value of each particle, and
then normalize it with softmax. The following shows the
process:

(20)
21

Ph(2t+1|ﬂf|t,m) X exp(corr(yf+17m))
corr(y,m) =Y 1(m; = y;)
o Resampling: We will perform resampling if the below
condition is satisfied:

Nepp = (22)

where N is the number of particles, and w; is the weight of
particle 4, and we set ratio v to 0.1.

We use Stratified Resampling algorithm for resampling, the
steps are simplified as below: (1) Add the particle weights
along the circumference of a circle. (2) Divide the circle into
N squal pieces and sample a uniform distribution in each
piece. (3) Select the particles corresponding to the uniform
distribution samples.

B. Texture map

We first obtain the depth and the pixel location (rgbi, rgbj)
of the associated RGB color by the following conversion:

dd = (—0.00304d + 3.31) (23)
depth = % 24)
 (526.37i + (—4.5 * 1750.46)dd + 19276)

_ 2
rgbi 585.051 25)
 (526.37j + 16662)

p— 2
rgbi 585.051 (26)

Once we get the rgbi, rgbj pixel coordinates, we transfrom
them to Optical frame coordinates with the following:

X, rgbi
Y,| = K~ |rgbj| * depth 27
Z, 1
585.05 0 242.94
K= 0 585.05 315.84 (28)
0 0 1

where K is the calibration matrix of the depth camera.
Then we transform coordinates from Optical frame to world
frame with the following:

Xuw X,
Yo | = wlesTeoT, ' | Yo 29
Zw Z,

where 7T, transform camera frame to optical frame, g7,
transform camera frame to body frame, 7z transform body
frame to world frame.

Now, we can get the indices of these points on the occu-
pancy grid map by converting the coordinates in the frame to
pixel frame.

Finally, we can insert the RGB values to the map over time.

IV. RESULTS

A. PFarticle Filter Slam

The following are the trajectories and occupancy grid maps
over time constructed by SLAM using data from dataset 20
and 21, where the blue line is the trajectory gained by dead-
reckoning while the red dots are the best particle pose in each
iteration. Besides, the black pixels are free and gray pixels are
occupied.

Occupancy grid map (log-odds)

250

200

150

100

0 50 100 150 200 250

Fig. 1. dataset 20

Occupancy grid map (log-odds)

250

200

150

100

0 50 100 150 200 250

Fig. 2. dataset 21

From the result above, we can see that the trajectory gained
from particle filter have a little shift from the ones gained from
dead-reckoning, which we viewed it as an improve from using
only dead-reckoning. Besides, the occupancy grids we gained
from using particle filter slam look good and reasonable, where
the free grids are all presented around our trajectory.

B. Texture map

I do not have enough time to work on texture map, but I
know I can follow the steps mentioned above to work on it.

