
ECE276B Project 2: Motion Planning
Wilson Liao

Department of Electrical and Computer Engineering
University of California, San Diego

w4liao@ucsd.edu

I. INTRODUCTION

Motion planning, also known as path planning, is a critical
problem in robotics. It involves determining a sequence of
valid, collision-free motions for a robot or an agent to move
from its current state to a desired goal state, while obeying
constraints and optimizing certain objectives. Motion planning
algorithms take into account the robot’s kinematics, dynamics,
and the environment in which it operates. The environment is
typically represented as a map or a geometric representation,
and the robot’s state can include its position, orientation,
and other relevant variables. Motion planning can be applied
to various robotic systems, including autonomous vehicles,
industrial manipulators, and humanoid robots. It plays a crucial
role in enabling these systems to autonomously navigate and
interact with their environment in a safe and efficient manner.

Algorithms for motion planning range from search-based
approaches such as A* and Dijkstra’s algorithm to sampling-
based planners such as Rapidly Exploring Random Trees
(RRT) and Probabilistic Roadmaps (PRM) and optimization-
based planners (e.g., trajectory optimization using techniques
like nonlinear programming or optimal control).

In this project, we compare weighted A*, RRT, RRT*, RRT-
Connect algorithms on seven different environments with their
advantages and disadvantages.

II. PROBLEM FORMULATION

A. Deterministic shortest path problem

The motion planning problem in this project can be formed
as a deterministic shortest path problem.

To implementing A* algorithm, we discretize the environ-
ment into 3-d occupancy grid, where we specify obstacles with
1 and free-space with 0. The state space X is the reachable
positions (grids with value 0) in the bounded environment.
The control space U is defined as actions that can reach
to the neighboring positions in the gird including diagonal
movements. U can be written as follows:

U = {(dx, dy, dz) | dx, dy, dz ∈ {+1, 0,−1}} \ (0, 0, 0)
(1)

where there are total 26 actions that we can take in each
position.

The motion model f can be defined as:

xt+1 = f(xt, ut) =


xt if xt = τ

xt + ut if (xt + ut ∈ X)
not doing this action otherwise

(2)

where τ is the terminal node.
A path is a sequence defined as:

i1:q = (ii, i2..., iq), ∀ik ∈ X (3)

All paths from x ∈ X to τ ∈ X can be defined as:

Ps,τ = {i1:q | ik ∈ X, i1 = s, iq = τ} (4)

The path length is the sum of edge weights along the path:

J i1:q =

q−1∑
k=1

cik,ik+1
(5)

The objective of the problem is to find a path i∗1:q that has
the min length from node s to node τ :

dist(s, τ) = min
i∗1:q∈Ps,τ

J i1:q (6)

i∗1:q = argmin
i1:q∈Ps,τ

J i1:q (7)

III. TECHNICAL APPROACH

A. Collision detection

To detect whether our path collides with the obstacles in the
environment, we check the path with each obstacle iteratively.
We break the path into small segments (a step in the motion
planning algorithms), which contains a start point and a end
point, and we check whether each segment intersects with the
obstacle. The algorithm we adopted can be broke down into
three parts:

1) Check whether the start point is in the obstacle, if yes,
then return true

2) Find the intersection of the segment and the obstacle on
each axis

3) Check whether the intersections are in the obstacle, if
at least one of them is in the obstacle, return true

The following is the algorithm we use in the project:

Algorithm 1 Collision Detection
Input: s, τ , min bound, max bound ∈ R3

dir = τ − s
if max bound > s > min bound then

return True
for axis← 0 to 2 do

if abs(dir[axis]) > 0 then
if dir[axis] > 0 then

t = (min bound[axis]− s[axis]) / dir[axis]
else

t = (max bound[axis]− s[axis]) / dir[axis]
if 1 > t > 0 then

pt = s+ t · dir
for axis′ ∈ {0, 1, 2} \axis do

if max bound[axis′] > pt[axis′] >
min bound[axis′] then

return True
return False

where the min bound and max bound are the boundaries
of the obstacle.

To check whether the path is collision-free, we check all the
segments in the path with a obstacle on this algorithm, and
repeat it on every obstacles.

B. Weighted A*

In the discretized environment, we defined the edge weights
cik,ik+1

as the distance of the ik and ik+1, which is the length
of the control input it takes. Thus, cik,ik+1

∈ {1,
√
2,
√
3}.

We adopt the weighted A* algorithm for the DSP problem,
the following is the pseudo code of the algorithm.

Algorithm 2 Weighted A* Algorithm
OPEN ← {s}, CLOSED ← {}, ϵ ≥ 1
gs = 0, gi =∞ for all i ∈ X \{s}
while τ /∈ CLOSED do

Remove i with smallest fi := gi + ϵhi from OPEN
Insert i into CLOSED
for j ∈ Children(i) and j /∈ CLOSED do

if gj > (gi + cij) then
gj ← (gj + cij)
Parent(j) ← i
if j ∈ OPEN then

Update priority of j
else

OPEN ← OPEN
⋃
{j}

where gi is the estimate of the optimal cost-to-arrive from
s to each visited i ∈ X; hi is the heuristic value from i to τ .

We choose Octile distance as our heuristic function:

hi = maxk|xτ,k − xi,k|+ (
√
d− 1) mink|xτ,k − xi,k| (8)

The OPEN list is implemented as a min heap to maintain
the node with minimum key (f-value) on the top; while the

CLOSE list is implemented as a set to store nodes that are
popped out of OPEN list.

C. Sampling-based planning algorithm

We implemented a search-based planning algorithm,
Weighted A star, in the previous section; however, the search-
based algorithms tend to be slow when the search space in-
creases. On the other hand, sampling-based planning algorithm
such as RRT can find a feasible path faster than search-based
algorithms.

Here, we use the RRT, RRT∗ and RRT-Connect algorithms
from Python motion planning library [1] to compare the results
with those using A* algorithm.

The RRT is basically building a tree until the goal is part
of it by doing the following steps:

1) Sample a free point xrand

2) Find a nearest point xnearest in the current tree and
xrand

3) Find a new point xnew which steers from xnearest

towards xrand by a fixed distance ϵ
4) If the segment from xnearest to xnew is collision-free,

insert xnew into the tree
5) Repeat step 1-4 until a point is a distance ϵ from the

goal is generated
The RRT-Connect is similar to RRT, but to build two trees,

one starts from the start point, the other starts from the end
point. By doing so, the algorithm can find a feasible path
faster especially in environments with traps since it covers
more sampling area. Besides, the RRT-Connect also attempts
to connect the two trees at every iteration.

The RRT∗ is similar to RRT but it adds a rewire step in
RRT to ensure the asymptotic optimality. The RRT∗ does the
following steps:

1) Sample a free point xrand

2) Find a nearest point xnearest in the current tree and
xrand

3) Find a new point xnew which steers from xnearest

towards xrand by a fixed distance ϵ
4) Extend step: If the segment from xnearest to xnew is

collision-free, find all nodes within a neighborhood N

a) Let xnearest = argminxnear∈N g(xnear) +
c(xnear, xnew) be the node in N on the currently
known shortest path from xs to xnew

b) Add node xnew and edge (xnearest, xnew) to the
tree

c) update the label xnew to = g(xnew) =
g(xnearest) + c(xnearset, xnew)

5) Rewire step: Check all nodes xnear ∈ N to see if re-
routing through xnew reduces the path length

a) If g(xnew) + c(xnew, xnear) < g(xnear), then
remove the edge between xnear and its parent and
add a new edge between xnear and xnew

6) Repeat step 1-5 until a point is a distance ϵ from the
goal is generated

The extend step in RRT∗ only connects the best node in
muliple near nodes; while the rewire step is basically doing
label correcting for the nodes in the neighborhood.

IV. RESULTS

A. Experiment setting

In the experiments, we discretize the environment with
resolution equals 0.1 for A∗ searching.

For RRT series algorithms, we set max steer distance into
0.025 to avoid collisions, and set max number of samples into
50000 to ensure adequate samples covering the environment,
especially maps with large constraints like maze and monza,
and set probability of checking for a connection to goal to 0.1.

For RRT∗, the max number of nearby branches to rewire is
set to 32.

B. Experiment result

The following tables are the result of different planning
algorithms test on different test cases, where the x in A∗-
x indicates the value of ϵ applied. RRT-Connect yields path
exceed the boundary on monza map, thus the results remain
blank.

single cube maze window tower
A∗-1 8.15 74.39 26.67 28.21
A∗-5 8.15 74.57 28.58 36.40
RRT 13.65 114.69 31.11 43.36
RRT∗ 8.77 78.29 24.57 32.80

RRT-Connect 13.00 98.37 32.02 46.03
flappy bird room monza

A∗-1 25.84 11.27 75.80
A∗-5 31.63 11.73 76.04
RRT 38.62 13.35 114.37
RRT∗ 28.31 12.34 78.40

RRT-Connect 46.01 24.26 -

TABLE I: Path length of different test cases and algorithms

single cube maze window tower
A∗-1 0.6017 282.96 52.15 33.06
A∗-5 0.0179 224.14 0.21 2.86
RRT 0.0266 9.31 0.16 0.62
RRT∗ 0.0076 36.24 0.85 8.63

RRT-Connect 0.0383 5.95 0.06 0.55
flappy bird room monza

A∗-1 45.52 6.88 42.78
A∗-5 0.72 0.65 32.12
RRT 0.13 0.07 15.85
RRT∗ 2.13 0.57 15.69

RRT-Connect 0.22 0.08 -

TABLE II: Run time (sec) of different test cases and algo-
rithms

single cube maze window tower
A∗-1 3822 1385367 382211 270548
A∗-5 50 1079893 1369 21908
RRT 57 14198 477 1713
RRT∗ 7 9907 296 989

RRT-Connect 76 15640 202 1735
flappy bird room monza

A∗-1 344318 51819 357122
A∗-5 5111 5074 272158
RRT 394 270 48934
RRT∗ 292 112 1847

RRT-Connect 747 227 -

TABLE III: Number of considered nodes of different test cases
and algorithms

C. Discussion

We discuss the performance of different planning algorithms
on these aspects: (1) quality of computed paths, (2) run time
for searching, (3) number of considered nodes.

For quality of computed paths, we found that RRT series
tend to yield path that is not collision-free in difficult en-
vironment such as monza, even though we reduce the max
steer distance lower than 0.1 (width of obstacles in monza
map); while A∗ generates collision-free path in all test cases.
In the aspect of path length, A∗-1 is almost the best among all
algorithms in all test cases. A∗-5 yields slightly longer paths
but is much faster. RRT and RRT-Connect yield way longer
and twisted paths; while RRT∗ optimizes the path with the
rewiring step and gets much shorter path similar to A∗.

For run time of computing paths, we found that RRT series
(sampling-based) algorithm is much faster than A∗ (searching-
based) algorithm. A∗ using larger value of ϵ tends to be faster
than those using smaller value due to the ϵ-consistency. RRT∗

tends to be slower than RRT and RRT-Connect due to the
optimization. Besides, RRT-Connect is even faster in some
cases since it use bi-directional sampling. However, in highly
constraints environment like maze and monza, RRT series
consume much more time compare to other maps.

For number of considered nodes, we found that A∗

(searching-based) algorithms consider much more nodes than
RRT series (sampling-based), which consumes more memory
and computation, especially A∗ with smaller value of ϵ, where
using larger value of ϵ can reduce searching in local min
given an appropriate heuristic. RRT∗ considers fewer nodes
comparing to RRT and RRT-Connect since it performs the
rewire step correcting the labels of neighboring nodes and
update better edges, which can reduce the samples toward end
point but consumes more computation in one iteration.

D. Path visualization

The following figures are the motion planning path visu-
alization of different planning algorithms on seven different
environments.

Fig. 1: Single Cube, A∗-1

Fig. 2: Single Cube, A∗-5

Fig. 3: Single Cube, RRT

Fig. 4: Single Cube, RRT∗

Fig. 5: Single Cube, RRT-Connect

Fig. 6: Maze, A∗-1

Fig. 7: Maze, A∗-5

Fig. 8: Maze, RRT

Fig. 9: Maze, RRT∗

Fig. 10: Maze, RRT-Connect

Fig. 11: Window, A∗-1

Fig. 12: Window, A∗-5

Fig. 13: Window, RRT

Fig. 14: Window, RRT∗

Fig. 15: Window, RRT-Connect

Fig. 16: Tower, A∗-1

Fig. 17: Tower, A∗-5

Fig. 18: Tower, RRT

Fig. 19: Tower, RRT∗

Fig. 20: Tower, RRT-Connect

Fig. 21: Flappy Bird, A∗-1

Fig. 22: Flappy Bird, A∗-5

Fig. 23: Flappy Bird, RRT

Fig. 24: Flappy Bird, RRT∗

Fig. 25: Flappy Bird, RRT-Connect

Fig. 26: Room, A∗-1

Fig. 27: Room, A∗-5

Fig. 28: Room, RRT

Fig. 29: Room, RRT∗

Fig. 30: Room, RRT-Connect

Fig. 31: Monza, A∗-1

Fig. 32: Monza, A∗-5

Fig. 33: Monza, RRT

Fig. 34: Monza, RRT∗

V. REFERENCE

[1] Python motion planning library
https://github.com/motion-planning/rrt-algorithms

